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We use the notion of FM-representability as an explication of
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Concrete Models

Definition

Let σ = {P1, . . . ,Pk ,C} be a finite relational (concrete)
vocabulary.
We say that A = (ϕU , ϕP1 , . . . , ϕPk

, ϕC , ϕ|=) is a concrete
σ-model when:

ϕU FM-represents a non-empty set U

ϕPi
FM-represents a ar(Pi )-ary relation Ri on U for

i = 1, . . . k

ϕC FM-represents a function C I from C to U

ϕ|= FM-represents the satisfaction relation on
(U,R1, . . . ,Rk ,C

I )
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Concrete model-theoretic notions

Expansion, Reduction

Sub-models

Morphisms between models

Diagrams

Chains of models
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Problems

Images under concrete morphisms and diagrams

Sums of arbitrary chains

Glueing models (to be explained later)
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Concrete Completeness

Theorem

Let T be a consistent theory such that Cn(T ) is concrete. Then
there is a concrete model A of T .
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Robinson’s Construction

Craig’s Interpolation Lemma

Let ϕ be a L1-sentence, let ψ be a L2 sentence and let ϕ |= ψ.
Then there is a L1 ∩ L2 sentence θ such that ϕ |= θ and θ |= ψ.

Separability

Let T1 be a theory in language L1 and let T2 be a theory in
language L2. We say that T1 and T2 are separable in there is an
L1 ∩ L2 sentence θ such that T1 ` θ and T2 ` ¬θ.
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Robinson’s Construction 2

Proof of Craig’s Interpolation Lemma

Let ϕ and ψ be as in the statement of the theorem. Suppose for
the sake of contradiction that there is no interpolant.

Construct a complete in L1 ∩ L2 theory A such that A ∪ {ϕ}
and A ∪ {¬ψ} are inseparable.

T0 = A ∪ {ϕ},
Ai by completeness from Ti

S0 = (ElDiag(A0) ∩ SentL1∩L2) ∪ {¬ψ},
Bi by completeness from Si
Ti+1 = (ElDiag(Bi ) ∩ SentL1∩L2) ∪ ElDiag(Ai ),
Si+1 = (ElDiag(Ai+1) ∩ SentL1∩L2) ∪ ElDiag(Bi ).
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Robinson’s Construction 3

A0

B0

A1

B1

A2

B2

. . .

. . .

Aω

Bω

Aω ∗ Bω

≺ ≺ ≺ ≺

≺ ≺ ≺ ≺
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Robinson’s Construction in Concrete Framework

Proof of Craig’s Interpolation Lemma

Let ϕ and ψ be as in the statement of the theorem.

Construct a complete in L1 ∩ L2 theory A such that A ∪ {ϕ}
and A ∪ {¬ψ} are inseparable.

T0 = A ∪ {ϕ},
Ai by completeness from Ti
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Robinson’s Construction in Concrete Framework 2

A0

B0

A1

B1

A2

B2

. . .

. . .

Aω

Bω

Aω ∗ Bω

≺ ≺ ≺ ≺

≺ ≺ ≺ ≺

Concrete completeness theorem is no sufficient!
We need a more convenient version of completeness theorem which

we can interate.
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Computations

Turing machines with oracles

Turing machines with two oracles

Halting problem

Low sets

Conventions
σ ∈ 2<ω, g ∈ 2ω,Φg

i (n),Φσ⊕g
i (n), σ ∈ T , g ∈ [T ], g�(i + 1)
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Low Basis Theorem

Low Basis Theorem

Every infinite low binary tree T has a low infinite branch f such
that f ⊕ T is low.

Corollary - Low Completeness Theorem

Let T be a consistent low theory. Then there is a low concrete
model A such that A |= T and A⊕ T is low.
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Low Basis Theorem 2

Un = {σ ∈ 2<ω : Φσ⊕T
n (n) ↑}.

Now let us inductively define a descending sequence of trees as
follows.

T0 = T ,

Tn+1 =

{
Tn if Tn ∩ Un is finite
Tn ∩ Un else

.

Marek Czarnecki Concrete Model Theory
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Low Basis Theorem 3

Tricky algorithms – Mi

f (i) = 1 if and only if TpM2iq+1 ∩ UpM2iq+1

IsFinite(T ) ≡ ∃n ∀σ (lh(σ) = n⇒ σ 6∈ T )
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Low Basis Theorem 4

Lemma 1

Let n ∈ ω. Then Tn is infinite and recursive in T , thus low.

Lemma 2

Let i ∈ ω and let g ∈ 2ω. Then:

g(i) = 1 if and only if Φg
pMiq

(pMiq) ↓

Lemma 3

Let i ∈ ω. Then:

Ti ∩ Ui is finite⇒ ∀g ∈ [Ti+1] Φg⊕T
i (i) ↓

Ti ∩ Ui is infinite⇒ ∀g ∈ [Ti+1] Φg⊕T
i (i) ↑
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Low Basis Theorem 5

Lemma 4

Let i ∈ ω. Then the following are equivalent:
1 TpMiq+1 ∩ UpMiq+1 is finite

2 ∀g ∈ [TpMiq+1] Φg⊕T
pMiq

(pMiq) ↓
3 ∀g ∈ [TpMiq+1] (g ⊕ T )(i) = 1

Lemma 5

Let i ∈ ω and let g ∈ [TpM2iq+1]. Then

g�(i + 1) = f �(i + 1)

Lemma 6

For every k ∈ ω it holds that f ∈ [Tk ].
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Low Basis Theorem 6

Lemma 7

Let i ∈ ω. Then the following are equivalent:

1 Ti ∩ Ui is finite
2 ∀g ∈ [Ti+1]Φ

g⊕T
i (i) ↓

3 Φf⊕T
i (i) ↓

Marek Czarnecki Concrete Model Theory



Introduction
Concrete Models

Model-theoretic Constructions
The Problem and the Solution

Low Basis Theorem 6

Lemma 7

Let i ∈ ω. Then the following are equivalent:
1 Ti ∩ Ui is finite

2 ∀g ∈ [Ti+1]Φ
g⊕T
i (i) ↓

3 Φf⊕T
i (i) ↓

Marek Czarnecki Concrete Model Theory



Introduction
Concrete Models

Model-theoretic Constructions
The Problem and the Solution

Low Basis Theorem 6

Lemma 7

Let i ∈ ω. Then the following are equivalent:
1 Ti ∩ Ui is finite
2 ∀g ∈ [Ti+1]Φ

g⊕T
i (i) ↓

3 Φf⊕T
i (i) ↓

Marek Czarnecki Concrete Model Theory



Introduction
Concrete Models

Model-theoretic Constructions
The Problem and the Solution

Low Basis Theorem 6

Lemma 7

Let i ∈ ω. Then the following are equivalent:
1 Ti ∩ Ui is finite
2 ∀g ∈ [Ti+1]Φ

g⊕T
i (i) ↓

3 Φf⊕T
i (i) ↓

Marek Czarnecki Concrete Model Theory



Introduction
Concrete Models

Model-theoretic Constructions
The Problem and the Solution

Robinson’s Construction in Concrete Framework - again

Proof of Craig’s Interpolation Lemma

Let ϕ and ψ be as in the statement of the theorem.

Construct a complete in L1 ∩ L2 theory A such that A ∪ {ϕ}
and A ∪ {¬ψ} are inseparable. But how??

T0 = A ∪ {ϕ},
Ai by low completeness from Ti

S0 = (ElDiag(A0) ∩ SentL1∩L2) ∪ {¬ψ},
Bi by low completeness from Si
Ti+1 = (ElDiag(Bi ) ∩ SentL1∩L2) ∪ ElDiag(Ai ),
Si+1 = (ElDiag(Ai+1) ∩ SentL1∩L2) ∪ ElDiag(Bi ).
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Robinson’s Construction in Concrete Framework - again 2

A0

B0

A1

B1

A2

B2

. . .

. . .

Aω

Bω

Aω ∗ Bω

≺ ≺ ≺ ≺

≺ ≺ ≺ ≺

Everything works... except for glueing.

Marek Czarnecki Concrete Model Theory


	Introduction
	Concrete Models
	Model-theoretic Constructions
	The Problem and the Solution

