Low Basis Theorem and Model Theory without Actual Infinity

Marek Czarnecki

Institute of Philosophy University of Warsaw

XVII(I) Logic Workshop Chęciny, 15–17 September 2016

Outline

- 2 Concrete Models
- 3 Model-theoretic Constructions
- 4 The Problem and the Solution

- 2 Concrete Models
- 3 Model-theoretic Constructions
- 4 The Problem and the Solution

Introduction

• We investigate model theoretic-constructions

Introduction

- We investigate model theoretic-constructions
- We study how these constructions can be performed without actual infinity

Introduction

- We investigate model theoretic-constructions
- We study how these constructions can be performed without actual infinity
- We use the notion of FM-representability as an explication of "expressibility without actual infinity"

3 Model-theoretic Constructions

Definition

Let $\sigma = \{P_1, \ldots, P_k, C\}$ be a finite relational (concrete) vocabulary.

We say that $\mathcal{A} = (\varphi_U, \varphi_{P_1}, \dots, \varphi_{P_k}, \varphi_C, \varphi_{\models})$ is a concrete σ -model when:

• φ_U FM-represents a non-empty set U

Definition

Let $\sigma = \{P_1, \ldots, P_k, C\}$ be a finite relational (concrete) vocabulary.

We say that $\mathcal{A} = (\varphi_U, \varphi_{P_1}, \dots, \varphi_{P_k}, \varphi_C, \varphi_{\models})$ is a concrete σ -model when:

- φ_U FM-represents a non-empty set U
- φ_{P_i} FM-represents a $ar(P_i)$ -ary relation R_i on U for i = 1, ..., k

Definition

Let $\sigma = \{P_1, \ldots, P_k, C\}$ be a finite relational (concrete) vocabulary.

We say that $\mathcal{A} = (\varphi_U, \varphi_{P_1}, \dots, \varphi_{P_k}, \varphi_C, \varphi_{\models})$ is a concrete σ -model when:

- φ_U FM-represents a non-empty set U
- φ_{P_i} FM-represents a $ar(P_i)$ -ary relation R_i on U for i = 1, ..., k
- φ_C FM-represents a function C^I from C to U

Definition

Let $\sigma = \{P_1, \ldots, P_k, C\}$ be a finite relational (concrete) vocabulary.

We say that $\mathcal{A} = (\varphi_U, \varphi_{P_1}, \dots, \varphi_{P_k}, \varphi_C, \varphi_{\models})$ is a concrete σ -model when:

- φ_U FM-represents a non-empty set U
- φ_{P_i} FM-represents a $ar(P_i)$ -ary relation R_i on U for i = 1, ..., k
- φ_C FM-represents a function C^I from C to U
- φ_⊨ FM-represents the satisfaction relation on (U, R₁,..., R_k, C['])

Concrete Models 2

Concrete model-theoretic notions

• Expansion, Reduction

Concrete Models 2

- Expansion, Reduction
- Sub-models

Concrete Models 2

- Expansion, Reduction
- Sub-models
- Morphisms between models

Concrete Models 2

- Expansion, Reduction
- Sub-models
- Morphisms between models
- Diagrams

Concrete Models 2

- Expansion, Reduction
- Sub-models
- Morphisms between models
- Diagrams
- Chains of models

Concrete Models 3

Problems

• Images under concrete morphisms and diagrams

Concrete Models 3

Problems

- Images under concrete morphisms and diagrams
- Sums of arbitrary chains

Concrete Models 3

Problems

- Images under concrete morphisms and diagrams
- Sums of arbitrary chains
- Glueing models (to be explained later)

Concrete Completeness

Theorem

Let T be a consistent theory such that Cn(T) is concrete. Then there is a concrete model A of T.

Robinson's Construction

Craig's Interpolation Lemma

Let φ be a L_1 -sentence, let ψ be a L_2 sentence and let $\varphi \models \psi$. Then there is a $L_1 \cap L_2$ sentence θ such that $\varphi \models \theta$ and $\theta \models \psi$.

Robinson's Construction

Craig's Interpolation Lemma

Let φ be a L_1 -sentence, let ψ be a L_2 sentence and let $\varphi \models \psi$. Then there is a $L_1 \cap L_2$ sentence θ such that $\varphi \models \theta$ and $\theta \models \psi$.

Separability

Let T_1 be a theory in language L_1 and let T_2 be a theory in language L_2 . We say that T_1 and T_2 are separable in there is an $L_1 \cap L_2$ sentence θ such that $T_1 \vdash \theta$ and $T_2 \vdash \neg \theta$.

Robinson's Construction 2

Proof of Craig's Interpolation Lemma

Let φ and ψ be as in the statement of the theorem. Suppose for the sake of contradiction that there is no interpolant.

Robinson's Construction 2

Proof of Craig's Interpolation Lemma

Let φ and ψ be as in the statement of the theorem. Suppose for the sake of contradiction that there is no interpolant.

• •
$$T_0 = A \cup \{\varphi\},$$

Robinson's Construction 2

Proof of Craig's Interpolation Lemma

Let φ and ψ be as in the statement of the theorem. Suppose for the sake of contradiction that there is no interpolant.

Construct a complete in L₁ ∩ L₂ theory A such that A ∪ {φ} and A ∪ {¬ψ} are inseparable.

• •
$$T_0 = A \cup \{\varphi\},$$

• \mathcal{A}_i by completeness from \mathcal{T}_i

Robinson's Construction 2

Proof of Craig's Interpolation Lemma

Let φ and ψ be as in the statement of the theorem. Suppose for the sake of contradiction that there is no interpolant.

• •
$$T_0 = A \cup \{\varphi\},$$

- \mathcal{A}_i by completeness from \mathcal{T}_i
- $S_0 = (\mathsf{ElDiag}(\mathcal{A}_0) \cap \operatorname{Sent}_{L_1 \cap L_2}) \cup \{\neg \psi\},$

Robinson's Construction 2

Proof of Craig's Interpolation Lemma

Let φ and ψ be as in the statement of the theorem. Suppose for the sake of contradiction that there is no interpolant.

• •
$$T_0 = A \cup \{\varphi\}$$
,

- \mathcal{A}_i by completeness from \mathcal{T}_i
- $S_0 = (\mathsf{ElDiag}(\mathcal{A}_0) \cap \operatorname{Sent}_{L_1 \cap L_2}) \cup \{\neg \psi\},$
- \mathcal{B}_i by completeness from S_i

Robinson's Construction 2

Proof of Craig's Interpolation Lemma

Let φ and ψ be as in the statement of the theorem. Suppose for the sake of contradiction that there is no interpolant.

• •
$$T_0 = A \cup \{\varphi\}$$
,

- \mathcal{A}_i by completeness from \mathcal{T}_i
- $S_0 = (\mathsf{ElDiag}(\mathcal{A}_0) \cap \operatorname{Sent}_{L_1 \cap L_2}) \cup \{\neg \psi\},\$
- \mathcal{B}_i by completeness from S_i
- $T_{i+1} = (\mathsf{ElDiag}(\mathcal{B}_i) \cap \operatorname{Sent}_{L_1 \cap L_2}) \cup \mathsf{ElDiag}(\mathcal{A}_i),$

Robinson's Construction 2

Proof of Craig's Interpolation Lemma

Let φ and ψ be as in the statement of the theorem. Suppose for the sake of contradiction that there is no interpolant.

• •
$$T_0 = A \cup \{\varphi\}$$
,

- \mathcal{A}_i by completeness from \mathcal{T}_i
- $S_0 = (\mathsf{ElDiag}(\mathcal{A}_0) \cap \operatorname{Sent}_{L_1 \cap L_2}) \cup \{\neg \psi\},\$
- \mathcal{B}_i by completeness from S_i
- $T_{i+1} = (\mathsf{ElDiag}(\mathcal{B}_i) \cap \operatorname{Sent}_{L_1 \cap L_2}) \cup \mathsf{ElDiag}(\mathcal{A}_i),$
- $S_{i+1} = (\mathsf{ElDiag}(\mathcal{A}_{i+1}) \cap \operatorname{Sent}_{L_1 \cap L_2}) \cup \mathsf{ElDiag}(\mathcal{B}_i).$

Robinson's Construction 3

2 Concrete Models

3 Model-theoretic Constructions

Robinson's Construction in Concrete Framework

Proof of Craig's Interpolation Lemma

Let φ and ψ be as in the statement of the theorem.

• •
$$T_0 = A \cup \{\varphi\}$$
,

- \mathcal{A}_i by completeness from \mathcal{T}_i
- $S_0 = (\mathsf{ElDiag}(\mathcal{A}_0) \cap \operatorname{Sent}_{L_1 \cap L_2}) \cup \{\neg \psi\},\$
- \mathcal{B}_i by completeness from S_i
- $T_{i+1} = (\mathsf{ElDiag}(\mathcal{B}_i) \cap \operatorname{Sent}_{L_1 \cap L_2}) \cup \mathsf{ElDiag}(\mathcal{A}_i),$
- $S_{i+1} = (\mathsf{ElDiag}(\mathcal{A}_{i+1}) \cap \operatorname{Sent}_{L_1 \cap L_2}) \cup \mathsf{ElDiag}(\mathcal{B}_i).$

Robinson's Construction in Concrete Framework 2

Concrete completeness theorem is no sufficient! We need a more convenient version of completeness theorem which we can interate.

Computations

• Turing machines with oracles

Computations

- Turing machines with oracles
- Turing machines with two oracles
Computations

- Turing machines with oracles
- Turing machines with two oracles
- Halting problem

Computations

- Turing machines with oracles
- Turing machines with two oracles
- Halting problem
- Low sets

Computations

- Turing machines with oracles
- Turing machines with two oracles
- Halting problem
- Low sets
- Conventions

 $\sigma \in 2^{<\omega}, g \in 2^{\omega}, \Phi_i^g(n), \Phi_i^{\sigma \oplus g}(n), \sigma \in T, g \in [T], g {\upharpoonright} (i+1)$

Low Basis Theorem

Low Basis Theorem

Every infinite low binary tree T has a low infinite branch f such that $f \oplus T$ is low.

Low Basis Theorem

Low Basis Theorem

Every infinite low binary tree T has a low infinite branch f such that $f \oplus T$ is low.

Corollary - Low Completeness Theorem

Let T be a consistent low theory. Then there is a low concrete model A such that $A \models T$ and $A \oplus T$ is low.

Low Basis Theorem 2

$$U_n = \{ \sigma \in 2^{<\omega} \colon \Phi_n^{\sigma \oplus \mathcal{T}}(n) \uparrow \}.$$

Now let us inductively define a descending sequence of trees as follows.

$$T_0 = \mathcal{T},$$

$$T_{n+1} = \begin{cases} T_n & \text{if } T_n \cap U_n \text{ is finite} \\ T_n \cap U_n & \text{else} \end{cases}$$

.

Low Basis Theorem 3

• Tricky algorithms – M_i

Low Basis Theorem 3

- Tricky algorithms M_i
- f(i) = 1 if and only if $T_{\lceil M_{2i} \rceil + 1} \cap U_{\lceil M_{2i} \rceil + 1}$

Low Basis Theorem 3

- Tricky algorithms M_i
- f(i) = 1 if and only if $T_{\lceil M_{2i} \rceil + 1} \cap U_{\lceil M_{2i} \rceil + 1}$
- $IsFinite(T) \equiv \exists n \, \forall \sigma \, (\ln(\sigma) = n \Rightarrow \sigma \notin T)$

Low Basis Theorem 4

Lemma 1

Let $n \in \omega$. Then T_n is infinite and recursive in T, thus low.

Low Basis Theorem 4

Lemma 1

Let $n \in \omega$. Then T_n is infinite and recursive in T, thus low.

Lemma 2

Let $i \in \omega$ and let $g \in 2^{\omega}$. Then:

$$g(i) = 1$$
 if and only if $\Phi^g_{\ulcorner M_i \urcorner}(\ulcorner M_i \urcorner) \downarrow$

Low Basis Theorem 4

Lemma 1

Let $n \in \omega$. Then T_n is infinite and recursive in T, thus low.

Lemma 2

Let $i \in \omega$ and let $g \in 2^{\omega}$. Then:

$$g(i)=1$$
 if and only if $\Phi^g_{\ulcorner M_i \urcorner}(\ulcorner M_i \urcorner) \downarrow$

Lemma 3

Let $i \in \omega$. Then:

- $T_i \cap U_i$ is finite $\Rightarrow \forall g \in [T_{i+1}] \Phi_i^{g \oplus T}(i) \downarrow$
- $T_i \cap U_i$ is infinite $\Rightarrow \forall g \in [T_{i+1}] \Phi_i^{g \oplus T}(i) \uparrow$

Low Basis Theorem 5

Lemma 4

Let $i \in \omega$. Then the following are equivalent:

• $T_{\ulcorner M_i \urcorner +1} \cap U_{\ulcorner M_i \urcorner +1}$ is finite

$$\forall g \in [T_{\ulcorner M_i \urcorner + 1}] \Phi_{\ulcorner M_i \urcorner}^{g \oplus T} (\ulcorner M_i \urcorner) \downarrow$$

$$\Im \forall g \in [T_{\ulcorner M_i \urcorner +1}] (g \oplus \mathcal{T})(i) = 1$$

Low Basis Theorem 5

Lemma 4

Let $i \in \omega$. Then the following are equivalent:

• $T_{\ulcorner M_i \urcorner +1} \cap U_{\ulcorner M_i \urcorner +1}$ is finite

$$\forall g \in [T_{\ulcorner M_i \urcorner + 1}] \Phi_{\ulcorner M_i \urcorner}^{g \oplus T} (\ulcorner M_i \urcorner) \downarrow$$

③
$$\forall g \in [T_{\ulcorner M_i \urcorner + 1}] (g \oplus T)(i) = 1$$

Lemma 5

Let $i \in \omega$ and let $g \in [T_{\lceil M_{2i} \rceil + 1}]$. Then

 $g{\restriction}(i+1)=f{\restriction}(i+1)$

Low Basis Theorem 5

Lemma 4

Let $i \in \omega$. Then the following are equivalent:

• $T_{\ulcorner M_i \urcorner +1} \cap U_{\ulcorner M_i \urcorner +1}$ is finite

$$\forall g \in [T_{\ulcorner M_i \urcorner + 1}] \Phi_{\ulcorner M_i \urcorner}^{g \oplus T} (\ulcorner M_i \urcorner) \downarrow$$

③
$$\forall g \in [T_{\ulcorner M_i \urcorner + 1}] (g \oplus T)(i) = 1$$

Lemma 5

Let $i \in \omega$ and let $g \in [T_{\lceil M_{2i} \rceil + 1}]$. Then

 $g{\restriction}(i+1)=f{\restriction}(i+1)$

Lemma 6

For every $k \in \omega$ it holds that $f \in [T_k]$.

Low Basis Theorem 6

Lemma 7

Let $i \in \omega$. Then the following are equivalent:

Marek Czarnecki Concrete Model Theory

Low Basis Theorem 6

Lemma 7

Let $i \in \omega$. Then the following are equivalent:

• $T_i \cap U_i$ is finite

Low Basis Theorem 6

Lemma 7

Let $i \in \omega$. Then the following are equivalent:

- $T_i \cap U_i$ is finite
- $\forall g \in [T_{i+1}] \Phi_i^{g \oplus T}(i) \downarrow$

Low Basis Theorem 6

Lemma 7

Let $i \in \omega$. Then the following are equivalent:

• $T_i \cap U_i$ is finite

$$\forall g \in [T_{i+1}] \Phi_i^{g \oplus T}(i) \downarrow$$

Robinson's Construction in Concrete Framework - again

Proof of Craig's Interpolation Lemma

Let φ and ψ be as in the statement of the theorem.

 Construct a complete in L₁ ∩ L₂ theory A such that A ∪ {φ} and A ∪ {¬ψ} are inseparable. But how??

• •
$$T_0 = A \cup \{\varphi\}$$
,

- \mathcal{A}_i by low completeness from \mathcal{T}_i
- $S_0 = (\mathsf{ElDiag}(\mathcal{A}_0) \cap \operatorname{Sent}_{L_1 \cap L_2}) \cup \{\neg \psi\},\$
- \mathcal{B}_i by low completeness from S_i
- $T_{i+1} = (\mathsf{ElDiag}(\mathcal{B}_i) \cap \operatorname{Sent}_{L_1 \cap L_2}) \cup \mathsf{ElDiag}(\mathcal{A}_i),$
- $S_{i+1} = (\mathsf{ElDiag}(\mathcal{A}_{i+1}) \cap \operatorname{Sent}_{L_1 \cap L_2}) \cup \mathsf{ElDiag}(\mathcal{B}_i).$

Robinson's Construction in Concrete Framework - again 2

Everything works... except for glueing.